Enhanced degradation of pretilachlor in soil and sediment slurries by inoculation of a mixed bacterial culture under anaerobic condition
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/21386Keywords:
Pretilachlor, degradation, enhancement, bioreactor, soil, sediment.Abstract
Pretilachlor is a main component of herbicides widely applied to control weeds, causing serious environmental problems. However, its degradation is so slow under anaerobic conditions. This study evaluated the enhancement of pretilachlor degradation using a mixed culture of Pseudomonas sp. Pr1, Proteiniclasticum sp. Pr2 and Paracoccus denitrificans Pr3. The result showed that the degradation using a horizontal-flow anaerobic immobilized biomass bioreactor gave a degradation rate of 3.11 ± 0.31 µM/day after six cycles. Moreover, the inoculation of these bacteria significantly augmented the degradation in slurries of soil collected from a paddy field and sediments from a river. In addition, the determination of pretilachlor degradation in water and soil collected from a paddy field showed that the degradation rates followed an order: a slurry of soil and water (20:80, w/w) > water ≈ soil and water (50:50, w/w). However, adjuvants in an herbicide significantly caused adverse effects on substrate degradation. This study showed the role of isolated bacteria in degradation augmentation in liquid media. It also provided information on the degradation differences in water soil slurry, and soil collected from a paddy field.
Downloads
References
Bhardwaj L., Kumar D., Singh U., Joshi C., Dubey S., 2024. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. Sci Total Environ, 914: 169911. https://doi.org/10.1016/ j.scitotenv.2024.169911
Bhowmick S., Das R., Das A. C. 2014. Effect of thiobencarb and pretilachlor on microorganisms in relation to mineralization of C and N in the Gangetic alluvial soil of West Bengal. Environ Monit Assess, 186(10): 6849–6856. https://doi.org/10.1007/s10661-014-3893-4
Braschi I., Pusino A., Gessa C., 2003. Adsorption-desorption of pretilachlor and cinosulfuron on paddy field sediment, in: Proceedings of the XII Symposium Pesticide Chemistry, Piacenza, Italy:
161–167.
Chau N. D., Sebesvari Z., Amelung W., Renaud F. G., 2015. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci Pollut Res Int, 22(12): 9042–9058. https://doi.org/10.1007/s11356-014-4034-x
Duc H. D., Oanh N. T., Dieu Thuy N. T., Kim Xuan N. T., 2024. Degradation of pretilachlor and fenclorim and effects of these compounds on bacterial communities under anaerobic condition. Biodegradation, 35(5): 583–599. https://doi.org/10.1007/ s10532-024-10078-1
Duc H. D., Triet B. M., 2017. Biodegradation of aniline by freely suspended and immobilized Pseudomonas moraviensis AN-5. Tap Chi Sinh Hoc, 39(3): 303–308. https://doi.org/10.15625/0866-7160/v39n3 .9630
Fajardo F. F., Takagi K., Usui K., 2000. Dissipation of mefenacet and pretilachlor in paddy soils under laboratory oxidative and reductive conditions. J Weed Sci Tech, 45(4): 250–253. https://doi.org/ 10.3719/WEED.45.250
Flori P., Pancaldi D., Braschi I., Gessa C., 2003. Behavior of four herbicides in a paddy field: simulation by a laboratory microcosm, in: Proceedings of the XII Symposium Pesticide Chemistry, Piacenza: 223–232.
Hisato M. I., 1998. Effects of the agrochemicals butachlor, pretilachlor and isoprothiolane on rat liver xenobioticmetabolizing enzymes. Xenobiotica, 28: 1029–1039. https://doi.org/10.1080/004982598238921
Hu L., Yao Y., Cai R., Pan L., Liu K., Bai L., 2020. Effects of fenclorim on rice physiology, gene transcription and pretilachlor detoxification ability. BMC Plant Biology, 20(1): 100. https://doi.org/10.1186/s12870-020-2304-y
Jiang J., Chen Y., Yu R., Zhao X., Wang Q., Cai L., 2016. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis andimmunotoxicity during zebrafish embryo development. Environ Toxicol Pharmacol, 42: 125–134. https://doi.org/10.1016/j.etap.2016.01.006
Jouyban A., Farajzadeh M. A., Mogaddam M. R. A., 2020. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta, 206: 120169.
Kadakol J. C., Kamanavalli C. M., Shouche Y., 2011. Biodegradation of Carbofuran phenol by free and immobilized cells of Klebsiella pneumoniae ATCC13883T. World J Microbiol Biotechnol, 27, 25–29. https://doi.org/10.1007/s11274-010-0422-7
Kobayashi K., Ashida N., Shim I. S., 1999. Pretilachlor behavior and its phytotoxic activity on transplanted rice in Utsunomiya paddy soil. J Weed Sci Tech, 44: 285–292. https://doi.org/10.3719/ WEED.44.285
Liu J., Zhang X., Xu J., Qiu J., Zhu J., Cao H., He J., 2020. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci Total Environ, 748: 141122. https://doi.org/ 10.1016/ j.scitotenv.2020.141122
Manohar S., Kim C. K., Karegoudar T. B., 2001. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl Microbiol Biotechnol, 55(3): 311–316. https://doi.org/ 10.1007/s002530000488
Marin-Morales M. A., Ventura-Camarg B. C., Hoshin M. M., 2013. Toxicity of herbicides: impact on aquatic and soil biota and human health. Herbicides Andrew Price, IntechOpen: 399–443. https://doi.org/10.5772/55851
Mulla S. I., Talwar M. P., Bagewadi Z. K., Hoskeri R. S., Ninnekar H. Z., 2013. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere, 90: 1920-1924. https://doi.org/10.1016/j.chemosphere.201.10.030
Murata T., Takagi K., Ishizaka M., Yokoyama K., 2004. Effects of mefenacet and pretilachlor applications on phospholipid fatty acid profiles of soil microbial communities in rice paddy soil. J Soil Sci Plant Nutr, 50: 349–356. https://doi.org/ 10.1080/00380768.2004.10408488
Oanh N. T., Duc H. D., 2022. Enhanced anaerobic degradation of thiobencarb using a horizontal-flow anaerobic immobilized biomass bioreactor. FEMS Microbiol Lett, 368(21−24): fnac001. https://doi.org/10.1093/femsle/fnac001
Oliveira G. H. D., Santos-Neto A. J., Zaiat M., 2017. Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. J Environ Manage, 204(1): 674−83.
Oloye F. F., Femi-Oloye O. P., Challis J. K., Jones P. D., Giesy J. P., 2021. Dissipation, fate, and toxicity of crop protection chemical safeners in aquatic environments. Rev Environ Contam Toxicol, 258: 27–53. https://doi.org/ 10.1007/398_2021_70
Ribeiro R., de Nardi I. R., Fernandes B. S., Foresti E., Zaiat M., 2013. BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions. Biodegradation, 24: 269–278.
Rodrigues B. C. G., de Mello B. S., da Silva B. F., Pozzi E., de Lima P. C. F., 2021. Gomes and Sarti A. Limonene removal using a horizontal-flow anaerobic immobilized biomass bioreactor. J Water Process Eng, 43: 102225.
Saha S., Dutta D., Karmakar R. D. P., 2012. Structure-toxicity relationship of chloroacetanilide herbicides: relative impact on soil microorganisms. Environ Toxicol Pharmacol, 34: 307–314. https://doi.org/10.1016/j.etap.2012.04.014
Sahoo S., Adak T., Bagchi T. B., Kumar U., Munda S., Saha S., Berliner J., Jena M., Mishra B. B., 2016. Non-target effects of pretilachlor on microbial properties in tropical rice soil. Environ Sci Pollut Res, 23: 7595–7602. https://doi.org/10.1007/ s11356-015-6026-x
Sapari P., Ismail B. S., 2012. Pollution levels of thiobencarb, propanil, and pretilachlor in
rice fields of the muda irrigation scheme, Kedah, Malaysia. Environ Monit Assess, 184(10): 6347–6356. https://doi.org/ 10.1007/s10661-011-2424-9
Shilpakar O., Karki B., Rajbhandari B., 2020. Pretilachlor poisoning: A rare case of an herbicide masquerading as organophosphate toxicity. Clin Case Rep, 8(12): 3507–3509. https://doi.org/ 10.1002/ccr3.3473.
Toan P. V., Sebesvari Z., Blasing M., Rosendahl I., Renaud F. G., 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci Total Environ, 452–453: 28–39. https://doi.org/10.1016/j.scitotenv.2013.0.026
Vidotto F., Ferrero A., Bertoia O., Gennari M., Cignetti A., 2004. Dissipation of pretilachlor in paddy water and sediment. Agronomie, 24: 473–479. https://doi.org/ 10.1051/agro:2004043
Wang L., Zheng M., Xu H., Hua Y., Liu A., Li Y., Fang L., Chen X., 2022. Fate and ecological risks of current-use pesticides in seawater and sediment of the Yellow Sea and East China Sea. Environ Res, 207: 112673. https://doi.org/10.1016/j.envres. 2021.112673
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ha Danh Duc, Nguyen Gia Hien, Nguyen Thi Dieu Thuy, Nguyen Thi Kim Xuan

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Academia Journal of Biology (AJB) is an open-access and peer-reviewed journal. The articles published in the AJB are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0), which permits for immediate free access to the articles to read, download, copy, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited (with a link to the formal publication through the relevant DOI), and without subscription charges or registration barriers. The full details of the CC BY-NC-ND 4.0 License are available at https://creativecommons.org/licenses/by-nc-nd/4.0/.