Identification of resistance-modifying agents from Pteris vittata L. By untargeted metabolomic analysis and in silico screening.

Nguyen Phuong Nhung, Dao Yen Vy, Nguyen Thi Thao Ngan, Nguyen Thi Kieu Oanh
Author affiliations

Authors

  • Nguyen Phuong Nhung Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi
  • Dao Yen Vy Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi
  • Nguyen Thi Thao Ngan Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi
  • Nguyen Thi Kieu Oanh University of Science and Technology of Hanoi

DOI:

https://doi.org/10.15625/2615-9023/22091

Keywords:

antibiotic resistance, in silico screening, UPLC-QToFMS, Pteris vittata, RND efflux pump, SmeDEF

Abstract

Antibiotic resistance is becoming an urgent public health concern worldwide, which leads to the urgent need for research and development of new antibacterials or new resistance-modifying agents. Pteris vittata L., which belongs to the Pteridaceae family, is a hyperaccumulator plant growing in metalliferous soils. This harsh environment is supposed to induce the expression or the dispersion of multidrug-resistant phenotypes through the action of efflux pumps in bacterial membranes to exclude heavy metals. Previous studies showed the potential inhibition of
P. vittata extracts on Stenophomonas maltophilia isolates. Therefore, to identify the active compounds in the plant, the whole metabolome of P. vittata was screened by untargeted analysis using the LC-MS-qToF system and then applied virtual docking to investigate the interaction of these compounds on an efflux pump model. Over one hundred compounds extracted from the root and leaf samples were docked on the SmeDEF protein using the Autodock Vina 4.2.6 application. As a preliminary result, we suggested nine flavonoid compounds showing the most negative binding energies with the chosen protein for further in vitro experimental confirmation.

Downloads

Download data is not yet available.

References

Alonso A., Martínez J. L., 2000. Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother, 44(11): 3079–3086.

Alonso A., Martínez J. L., 2001. Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother, 45:

1879–1881.

Cesaro P., Cattaneo C., Bona E., Berta G., Cavaletto M., 2015. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases. Sci Rep., 5(1): 14525.

Colclough A. L., Alav I., Whittle E. E., Pugh H. L., Darby E. M., Legood S. W., McNeil H. E., Blair J. M. A., 2020. RND efflux pumps in Gram-negative bacteria: Regulation, structure and role in antibiotic resistance. Future Microbiol., 15: 143–157. PubMed

Wu C.-J., Lu H.-F., Lin Y.-T., Zhang M.-S., Li L.-H., Yang T.-C., 2019. Substantial Contribution of SmeDEF, SmeVWX, SmQnr, and Heat Shock Response to Fluoroquinolone Resistance in Clinical Isolates of Stenotrophomonas maltophilia. Front Microbiol., 10: 822.

Compagne N., Vieira Da Cruz A., Müller R. T., Hartkoorn R. C., Flipo M., Pos K. M., 2023. Update on the discovery of efflux pump inhibitors against critical priority Gram-negative bacteria. Antibiotics (Basel)., 12(1): 180.

Ling B. D., Zhang L., Li X. Z., 2016. Antimicrobial resistance and drug efflux pumps in Acinetobacter. In: Li X. Z., Elkins C., Zgurskaya H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Springer: 329–358.

Gil-Gil T., Laborda P., Ochoa-Sánchez L. E., Hernando-Amado S., Martínez J. L., 2023. Efflux in Gram-negative bacteria: what are the latest opportunities for drug discovery. Expert Opin Drug Discov., 18(6): 671–686.

Ho M.-C., Hsiao C.-H., Sun M.-H., Chen C.-L., Ma D.-H., Lin K.-K., Tan H.-Y., Yeh L.-K., Chang C.-J., Huang Y.-C., 2021. Antimicrobial susceptibility, minimum inhibitory concentrations, and clinical profiles of Stenotrophomonas maltophilia endophthalmitis. Microorganisms, 9(9): 1840.

Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M., 1993. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Crystallogr., 26(2): 283–291.

Ling B. D., Zhang L., Li X. Z., 2016. Antimicrobial resistance and drug efflux pumps in Acinetobacter. In: Li X. Z., Elkins C., Zgurskaya H. I. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Springer: 329–358. doi: 10.1007/978-3-319-39658-3_13.

Mittal A. K., Bhardwaj R., Mishra P., Rajput S. K., 2020. Antimicrobials misuse/overuse: Adverse effect, mechanism, challenges and strategies to combat resistance. Open Biotechnol J., 14(1). doi: 10.2174/18740 70702014010107.

Morris G. M., Huey R., Lindstrom W., Sanner M. F., Belew R. K., Goodsell D. S., Olson A. J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem., 30(16): 2785–2791.

National Center for Biotechnology Information. RND protein [Stenotrophomonas maltophilia K279a]. Accessed October 16, 2023. https://www.ncbi.nlm.nih.gov/protein/ CAG34257.1.

Nguyen N. L., Bui V. H., Pham H. N., Dao T. T., Tran D. T., Hoang T. T., Le V. C., Pham T. N., Nguyen T. H., Pham H. Q., 2022. Ionomics and metabolomics analysis reveal the molecular mechanism of metal tolerance of Pteris vittata L. dominating in a mining site in Thai Nguyen province, Vietnam. Environ Sci Pollut Res Int., 29(58): 87268–87280.

Nguyen T. K. O., Nguyen L., Pham N., Le D., Nguyen T., Nguyen H., Dao T., Le V., 2021. Development of a Pteris vittata L. compound database by widely targeted metabolomics profiling. Biomed Chromatogr., 35(8): e5110. doi: 10.1002/ bmc.5110.

O’Boyle N. M., Banck M., James C. A., Morley C., Vandermeersch T., Hutchison G. R., 2011. Open Babel: An open chemical toolbox. J Cheminform., 3(1): 33.

Raad M., Abou Haidar M., Ibrahim R., Cheaito R., El Zakhem A., Kanj S. S., 2023. Stenotrophomonas maltophilia pneumonia in critical COVID-19 patients. Sci Rep., 13(1): 3392.

Sánchez M. B., García-León G., Hernández A. G., Martínez J. L., 2016. Antimicrobial drug efflux pumps in Stenotrophomonas maltophilia. In: Li X. Z., Elkins C., Zgurskaya H. I. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Springer: 401–416. doi: 10.1007/978-3-319-39658-3_15.

Williams C. J., Headd J. J., Moriarty N. W., Prisant M. G., Videau L. L., Deis L. N., Verma V., Keedy D. A., Hintze B. J., Chen V. B., Jain S., Lewis S. M., Arendall W. B. III, Snoeyink J., Adams P. D., Lovell S. C., Richardson J. S., Richardson D. C., 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci., 27(1): 293–315.

Wu C.-J., Lu H.-F., Lin Y.-T., Zhang M.-S., Li L.-H., Yang T.-C., 2019. Substantial contribution of SmeDEF, SmeVWX, SmQnr, and heat shock response to fluoroquinolone resistance in clinical isolates of Stenotrophomonas maltophilia. Front Microbiol., 10: 822.

Yamaguchi A., Nakashima R., Sakurai K., 2015. Structural basis of RND-type multidrug exporters. Front Microbiol., 6: 327.

Youenou B., Favre-Bonté S., Bodilis J., Brothier E., Dubost A., Muller D., Nazaret S., Comte G., 2015. Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biol Evol., 7(9):

2484–2505. doi: 10.1093/gbe/evv161.

Downloads

Published

23-09-2025

How to Cite

Phuong Nhung, N., Yen Vy, D., Thao Ngan, N. T., & Kieu Oanh, N. T. (2025). Identification of resistance-modifying agents from <em>Pteris vittata</em> L. By untargeted metabolomic analysis and in silico screening . Academia Journal of Biology, 47(3), 115–128. https://doi.org/10.15625/2615-9023/22091

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.