Phage therapy as a promising solution for food safety: isolation and biological characterization of bacteriophage P2 for controlling Salmonella enterica infections

Tran Khang Nam, Pham Thi Lanh, Man Hong Phuoc, Dong Van Quyen
Author affiliations

Authors

  • Tran Khang Nam Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Pham Thi Lanh Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Man Hong Phuoc Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Dong Van Quyen https://orcid.org/0000-0003-1002-7517

DOI:

https://doi.org/10.15625/2615-9023/22401

Keywords:

bacteriophage, food poisoning, food preservation, phage therapy, Salmonella enterica infection

Abstract

Food poisoning and foodborne illnesses not only directly impact human health and quality of life but also result in significant economic losses and healthcare costs. Among the factors causing food poisoning, bacteria are the most common, including Salmonella enterica, which belongs to the Enterobacteriaceae family. Salmonellosis, which is introduced by S. enterica infection, can lead to symptoms such as fever, diarrhea, vomiting, and, in severe cases, even death. Remarkably, S. enterica has developed a high level of antibiotic resistance. Hence, the imperative pursuit of a reliable approach capable of averting S. enterica infections has emerged as an important goal essential for ensuring public health safety. This study aims to identify bacteriophages capable of effectively controlling S. enterica. Ten phage strains were isolated, among which phage P2, classified under the Siphoviridae family, exhibited strong lytic activity and a broad host range. Phage P2 had an optimal multiplicity of infection (MOI) of 0.01, reaching a titer of about 8.4 × 109 PFU/mL. It displayed a latent period of 15 minutes and a burst size of 63 PFU/cell. Notably, phage P2 demonstrated tolerance to a wide range of conditions, including temperatures from 4 oC to 50 oC, pH levels from 2 to 12, and salt concentrations of 0.1 M–7 M. The in vitro lytic activity assay showed that phage P2 significantly reduced bacterial counts by 3.08 log CFU/mL compared to the control group after one hour of incubation at 37 oC. These findings highlight the potential of phage P2 as a promising biocontrol agent for food preservation.

Downloads

Download data is not yet available.

References

Abbas R. Z., Alsayeqh A. F. & Aqib A. I., 2022. Role of bacteriophages for optimized health and production of poultry. Animals, 12(23): 3378.

Bardina C., Spricigo D. A., Cortés P. & Llagostera M., 2012. Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Applied and environmental microbiology, 78(18): 6600−6607.

Carey-Smith G. V., Billington C., Cornelius A. J., Hudson J. A. & Heinemann J. A., 2006. Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS microbiology letters, 258(2): 182−186.

Chung K. M., Liau X. L. & Tang S. S., 2023. Bacteriophages and Their Host Range in Multidrug-Resistant Bacterial Disease Treatment. Pharmaceuticals, 16(10): 1467.

Coburn B., Grassl G. A. & Finlay B., 2007. Salmonella, the host and disease: a brief review. Immunology and cell biology, 85(2): 112−118.

El-Dougdoug N., Cucic S., Abdelhamid A., Brovko L., Kropinski A., Griffiths M. & Anany H., 2019. Control of Salmonella Newport on cherry tomato using a cocktail of lytic bacteriophages. International journal of food microbiology, 293: 60−71.

Holtappels D., Alfenas-Zerbini P. & Koskella B., 2023. Drivers and consequences of bacteriophage host range. FEMS microbiology reviews, 47(4): fuad038.

Huang C., Virk S. M., Shi J., Zhou Y., Willias S. P., Morsy M. K., Abdelnabby H. E., Liu J., Wang X. & Li J., 2018. Isolation, characterization, and application of bacteriophage LPSE1 against Salmonella enterica in ready to eat (RTE) foods. Frontiers in microbiology, 9: 1046.

Islam M. S., Zhou Y., Liang L., Nime I., Liu K., Yan T., Wang X. & Li J., 2019. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses, 11(9): 841.

Khan M. A. S., Islam Z., Barua C., Sarkar M. M. H., Ahmed M. F. & Rahman S. R., 2024. Phenotypic characterization and genomic analysis of a Salmonella phage L223 for biocontrol of Salmonella spp. in poultry. Scientific Reports, 14(1): 15347.

Khan M. A. S., & Rahman S. R., 2022. Use of phages to treat antimicrobial-resistant Salmonella infections in poultry. Veterinary Sciences, 9(8): 438.

Kim J. H., Kim H. J., Jung S. J., Mizan M. F. R., Park S. H. & Ha S. D., 2020. Characterization of Salmonella spp.‐specific bacteriophages and their biocontrol application in chicken breast meat. Journal of food science, 85(3): 526−534.

Kim S., Kim S.-H., Rahman M., & Kim J., 2018. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. Journal of Microbiology, 56: 917−925.

Knapik K. Z., 2013. Genetic analysis of bacteriophages from clinical and environmental samples.

Kumar A., Malik H., Dubal Z. B., Jaiswal R. K., Kumar S., Kumar B. & Agarwal R. K., 2022. Isolation and characterization of Salmonella phages and phage cocktail mediated biocontrol of Salmonella enterica serovar Typhimurium in chicken meat. LWT, 155: 112957.

Laure N. N. & Ahn J., 2022. Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microbial pathogenesis, 171: 105732.

Lee W., Kim E., Zin H., Sung S., Woo J., Lee M. J., Yang S.-M., Kim S. H., Kim S. H. & Kim H.-Y., 2022. Genomic characteristics and comparative genomics analysis of Salmonella enterica subsp. enterica serovar Thompson isolated from an outbreak in South Korea. Scientific Reports, 12(1): 20553. https://doi.org/ 10.1038/s41598-022-22168-2

Li Z., Ma W., Li W., Ding Y., Zhang Y., Yang Q., Wang J. & Wang X., 2020. A broad-spectrum phage controls multidrug-resistant Salmonella in liquid eggs. Food Research International, 132: 109011.

Liu A., Liu Y., Peng L., Cai X., Shen L., Duan M., Ning Y., Liu S., Li C., Liu Y., Chen H., Wu W., Wang X., Hu B. & Li C., 2020. Characterization of the narrow-spectrum bacteriophage LSE7621 towards Salmonella Enteritidis and its biocontrol potential on lettuce and tofu. LWT, 118: 108791. https://doi.org/https://doi.org/ 10.1016/j.lwt.2019.108791

Modi R., Hirvi Y., Hill A., & Griffiths M., 2001. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. Journal of Food Protection, 64(7): 927−933.

Nguyen T. T., Do T. H., Craig W. J. & Zimmerman G., 1983. Food habits and preferences of Vietnamese children. Journal of School Health, 53(2): 144−147.

Sattar S., Ullah I., Khanum S., Bailie M., Shamsi B., Ahmed I., Shah S. T. A., Javed S., Ghafoor A., Pervaiz A., Sohail F., Shah N. A., Imdad K., Bostan N. & Altermann E., 2022. Phenotypic characterization and genome analysis of a novel Salmonella Typhimurium phage having unique tail fiber genes. Scientific Reports, 12(1): 5732. https://doi.org/ 10.1038/s41598-022-09733-5

Scarascia G., Fortunato L., Myshkevych Y., Cheng H., Leiknes T. & Hong P.-Y., 2021. UV and bacteriophages as a chemical-free approach for cleaning membranes from anaerobic bioreactors. Proceedings of the National Academy of Sciences, 118(37): e2016529118.

Shang Y., Sun Q., Chen H., Wu Q., Chen M., Yang S., Du M., Zha F., Ye Q. & Zhang J., 2021. Isolation and characterization of a novel Salmonella phage vB_SalP_TR2. Frontiers in microbiology, 12: 664810.

Silva Y. J., Costa L., Pereira C., Cunha Â., Calado R., Gomes N. C. & Almeida A., 2014. Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microbial biotechnology, 7(5): 401−413.

Sritha K. & Bhat S. G., 2018. Genomics of Salmonella phage ΦStp1: candidate bacteriophage for biocontrol. Virus Genes, 54: 311−318.

Tamura K., Stecher G. & Kumar S., 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution, 38(7): 3022−3027.

Tang F., Zhang P., Zhang Q., Xue F., Ren J., Sun J., Qu Z., Zhuge X., Li D. & Wang J., 2019. Isolation and characterization of a broad-spectrum phage of multiple drug resistant Salmonella and its therapeutic utility in mice. Microbial pathogenesis, 126: 193−198.

Talukder H., Roky S. A., Debnath K., Sharma B., Ahmed J. & Roy S., 2023. Prevalence and antimicrobial resistance profile of Salmonella isolated from human, animal and environment samples in South Asia: a 10-year meta-analysis. Journal of epidemiology and global health, 13(4): 637−652.

Teklemariam A. D., Alharbi M. G., Al-Hindi R. R., Alotibi I., Aljaddawi A. A., Azhari S. A. & Esmael A., 2022. Isolation and

characterization of Chi-like Salmonella bacteriophages infecting two Salmonella enterica Serovars, Typhimurium and Enteritidis. Pathogens, 11(12): 1480.

Wang C., Chen Q., Zhang C., Yang J., Lu Z., Lu F. & Bie X., 2017. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Research, 236: 14−23.

Wong C. L., Sieo C. C., Tan W. S., Abdullah N., Hair-Bejo M., Abu J. & Ho Y. W., 2014. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. International journal of food microbiology, 172: 92−101.

Zhang Y., Chu M., Liao Y.-T., Salvador A. & Wu V. C., 2024. Characterization of two novel Salmonella phages having biocontrol potential against Salmonella spp. in gastrointestinal conditions. Scientific Reports, 14(1): 12294.

Downloads

Published

23-06-2025

How to Cite

Tran Khang Nam, Lanh, P. T., Hong Phuoc, M., & Quyen, D. V. (2025). Phage therapy as a promising solution for food safety: isolation and biological characterization of bacteriophage P2 for controlling <em>Salmonella enterica</em> infections. Academia Journal of Biology, 47(2), 53–64. https://doi.org/10.15625/2615-9023/22401

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.