Seagrass ecosystems in Pujada bay, Davao Oriental, Philippines: evaluating the impact of anthropogenic pressures on species richness

Claudine C. Sanchez-Delute, Sherwin Edgar B. Atoy, Cirilo O. Ybañez Jr
Author affiliations

Authors

  • Claudine C. Sanchez-Delute Department of Environment and Natural Resources - Community Environment and Natural Resources Office, City of Mati, Davao Oriental, Philippines
  • Sherwin Edgar B. Atoy City Environment and Research Development Department, City of Mati, Davao Oriental, Philippines
  • Cirilo O. Ybañez Jr Faculty of Agriculture and Life Sciences, Davao Oriental State University, City of Mati, Davao Oriental, Philippines

DOI:

https://doi.org/10.15625/2615-9023/22573

Keywords:

Seagrass biodiversity, anthropogenic pressures, Pujada Bay, species richness, marine conservation.

Abstract

This study investigates the biodiversity of seagrass ecosystems in Pujada Bay, Davao Oriental, Philippines, with a particular focus on evaluating the impact of anthropogenic pressures on species richness and composition. Seagrass communities from three sites with varying disturbance levels were compared: heavily populated Taganilao, moderately populated Lawigan, and uninhabited Pujada Island. Aerial surveys, transect-quadrat sampling, and environmental measurements (dissolved oxygen (DO), pH, salinity, temperature) were used to assess species distribution, shoot density, and abundance. Results showed that Pujada Island had the highest species richness and a balanced community structure, while Taganilao, impacted by pollution and reclamation, had lower diversity and was dominated by the resilient Thalassia hemprichii. Kruskal-Wallis tests confirmed significant differences in abundance, especially between Taganilao and Pujada Island (p = 0.000273). Canonical Correspondence Analysis highlighted temperature and DO as key drivers of species distribution. The study underscores the urgent need for conservation measures to mitigate human impacts and protect seagrass ecosystems in Pujada Bay.

Downloads

Download data is not yet available.

References

Amone-Mabuto M., Mubai M., Bandeira S., Shalli M. S., Adams J. B., Lugendo B. R., Hollander J., 2023. Coastal communities’ perceptions on the role of seagrass ecosystems for coastal protection and implications for management. Ocean & coastal management, 244: 106811. https://doi.org/10.1016/j.ocecoaman.2023.106811

Angsinco-Jimene L., Nogodula R., Tans D., 2003. Assessment of seagrass and macrobenthic algae in Pujada Bay, Mati, Davao Oriental. Davao Research Journal, 6(1): 1−11. https://doi.org/10.59120/drj. v6i1.46

Arriesgado D., Arriesgado E., Roa E., Perpetua A., Gonzales R., Acuña R., Sornito M., 2024. Seagrass cover and associated macrobenthic marine invertebrates in Southern Philippines. Aquatic Ecology, 58(3): 643−657. https://doi.org/10.1007/ s10452-024-10095-5

Atencio J. M., Delostrico R. Q., Reynaldo H. N., Metillo E. B., 2024. The state of seagrass community in Panguil Bay, Southern Philippines. AACL Bioflux, 17(6).

Connolly R. M., Jackson E. L., Macreadie P. I., Maxwell P. S., O’Brien K. R., 2018. Seagrass dynamics and resilience. In Seagrasses of Australia: Structure, ecology and conservation Cham: 197−212. Springer International Publishing. https://doi.org/10.1007/978-3-319-71354-0_7

Cossa D., Infantes E., Dupont S., 2024. Hidden cost of pH variability in seagrass beds on marine calcifiers under ocean acidification. Science of the Total Environment, 915: 170169. https://doi.org/ 10.1016/j.scitotenv.2024.170169

Felix M., Ybañez Jr C., Macusi E. 2022. Assemblages of Benthic Foraminifera in Pujada Island, Davao Oriental, Philippines. Davao Research Journal, 13(1): 1−1. https://doi.org/10.59120/drj.v13i1.92

Griffin K. J., Johnston E. L., Poore A. G., Verges A., Clark G. F., 2024. Reducing direct physical disturbance also mitigates hidden drivers of decline in a threatened seagrass meadow. Frontiers in Conservation Science, 5: 1463637. https://doi.org/10.3389/fcosc.2024.1463637

Hastings R., Cummins V., Holloway P., 2020. Assessing the impact of physical and anthropogenic environmental factors in determining the habitat suitability of seagrass ecosystems. Sustainability, 12(20): 8302. https://doi.org/10.3390/su12208302

Hordijk I., Maynard D. S., Hart S. P., Lidong M., Ter Steege H., Liang J., Pfautsch S., 2023. Evenness mediates the global relationship between forest productivity and richness. Journal of Ecology, 111(6): 1308−1326. https://doi.org/10.1111/1365-2745.14098

Kinamot V. B., 2024. Influence of seagrass traits on the diversity of endophytic fungi. Biodiversitas Journal of Biological Diversity, 25(3). https://doi.org/10.13057/ biodiv/d250342

Lanyon J. M., Sneath H. L., Long T., Blanshard W. H., Worthy G. A., Booth D. T., 2024. How much seagrass does a dugong need? Metabolic rate of live wild dugongs, Dugong dugon, determined through indirect calorimetry (oxygen consumption). Marine Mammal Science: e13190. https://doi.org/ 10.1111/mms.13190

Li Z., Li H., Zhang M., Zhang L., Li J., Liu J. 2025. Physiological and Molecular Responses of Tropical Seagrass Enhalus acoroides Exposed to Simultaneous High Temperature and Hypoxia Stress. Marine Environmental Research: 106997. https://doi.org/10.1016/j.marenvres.2025.106997

Lima M., D. A. C., Bergamo T. F., Ward R. D., Joyce C. B., 2023. A review of seagrass ecosystem services: providing nature-based solutions for a changing world. Hydrobiologia, 850(12): 2655−2670. https://doi.org/10.1007/s10750-023-05244-0

Liu S., Huang Y., Luo H., Ren Y., Jiang Z., Wu Y., Huang X., 2025. How Does Seagrass Cope with Eutrophication? From Stress Responses to Molecular Adaptive Mechanisms. Current Pollution Reports, 11(1): 42. https://doi.org/10.1007/s40726-025-00374-6

Ma X., Vanneste S., Chang J., Ambrosino L., Barry K., Bayer T., Van de Peer Y., 2024. Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. Nature plants, 10(2): 240−255. https://doi.org/10.1038/s41477-023-01608-5.

Magapan C. A., Ybañez Jr C. O., 2025. First Survey of Land Snails in Mount Hamiguitan: Biodiversity and Environmental Insights from a UNESCO World Heritage and ASEAN Heritage Park in the Philippines. Zoological Studies, 64(36): https://doi.org/10.6620/ ZS.2025.64-36

Marbà N., Jordà G., Bennett S., Duarte C. M., 2022. Seagrass thermal limits and vulnerability to future warming. Frontiers in Marine Science, 9: 860826. https://doi.org/10.3389/fmars.2022.860826

McCloskey R. M., Unsworth R. K., 2015. Decreasing seagrass density negatively influences associated fauna. PeerJ, 3: e1053. https://doi.org/10.7717/peerj.1053

McMahon K., Kilminster K., Canto R., Roelfsema C., Lyons M., Kendrick G. A., Udy J. 2022. The risk of multiple anthropogenic and climate change threats must be considered for continental scale conservation and management of seagrass habitat. Frontiers in Marine Science, 9: 837259. https://doi.org/10.3389/fmars. 2022.837259

Moreira-Saporiti A., Teichberg M., Garnier E., Cornelissen J. H. C., Alcoverro T., Björk M., Santos R., 2023. A trait-based framework for seagrass ecology: Trends and prospects. Frontiers in Plant Science, 14: 1088643. https://doi.org/10.3389/ fpls.2023.1088643

Nordlund L. M., Unsworth R. K., Wallner‐Hahn S., Ratnarajah L., Beca‐Carretero P., Boikova E., Wilkes R., 2024. One hundred priority questions for advancing seagrass conservation in Europe. Plants, People, Planet, 6(3): 587−603. https://doi.org/10.1002/ppp3.10486

Nugraha A. H., Bengen D. G., Kawaroe M., 2017. Physiological response of Thallasia hemprichii on antrophogenic pressure in Pari Island, Seribu Islands, DKI Jakarta. Ilmu Kelautan, 22(1): 40−48. https://doi.org/10.14710/ik.ijms.22.1.40-48

Olive I., García-Robledo E., Silva J., Pintado-Herrera M. G., Santos R., Kamenos N. A., Frouin P., 2022. Contribution of the seagrass Syringodium isoetifolium to the metabolic functioning of a tropical reef lagoon. Frontiers in Marine Science, 9: 867986. https://doi.org/10.3389/fmars. 2022.867986

Peng K., Yan L., Xie X., Deng Y., Gan Y., Zhang Y., 2024. Hydrogeochemical dynamics under saltwater-freshwater mixing in a mangrove wetland over tidal cycles. Science of The Total Environment, 954: 176827. https://doi.org/0.1016/ j.scitotenv.2024.176827

Pislan H. T., Ybañez Jr C. O., 2024. Copepod distribution and diversity in the coastal areas of Ban-ao and Lambajon, Davao Oriental, Philippines: Environmental influences and conservation implications. Davao Research Journal, 15(2): 50−65. https://doi.org/10.59120/drj.v15iNo.2.185

Qin L. Z., Suonan Z., Kim S. H., Lee K. S., 2021. Growth and reproductive responses of the seagrass Zostera marina to sediment nutrient enrichment. ICES Journal of Marine Science, 78(3): 1160−1173. https://doi.org/10.1093/icesjms/fsab031

Rahayu Y. P., Kusumaningtyas M. A., Daulat A., Rustam A., Suryono D. D., Salim H. L., Adi N. S., 2023. Sedimentary seagrass carbon stock and sources of organic carbon across contrasting seagrass meadows in Indonesia. Environmental Science and Pollution Research, 30(43): 97754−97764. https://doi.org/10.1007/ s11356-023-29257-3

Reyes A. G. B., Vergara M. C. S., Blanco A. C., Salmo III S. G., 2022. Seagrass biomass and sediment carbon in conserved and disturbed seascape. Ecological Research, 37(1): 67−79.

Shen J., Wu Z., Yin L., Chen S., Cai Z., Geng X., Wang D., 2022. Physiological basis and differentially expressed genes in the salt tolerance mechanism of Thalassia hemprichii. Frontiers in Plant Science, 13: 975251. https://doi.org/10.3389/fpls.2022.975251

Soissons L. M., Li B., Han Q., Van Katwijk M. M., Ysebaert T., Herman P. M., Bouma, T. J., 2016. Understanding seagrass resilience in temperate systems: the importance of timing of the disturbance. Ecological indicators, 66: 190−198. https://doi.org/10.1016/j.eco lind.2016.01.030

Strachan L. L., Lilley R. J., Hennige S. J., 2022. A regional and international framework for evaluating seagrass management and conservation. Marine Policy, 146: 105306. https://doi.org/ 10.1016/j.marpol.2022.105306

Suriya C., Satian C., Visut B., Supadha K., 2022. Diversity of freshwater fish at sago palm wetlands, Nakhon Si Thammarat province, Thailand. Biodiversitas Journal of Biological Diversity, 23(12). https://doi.org/10.13057/biodiv/d231230

Swadling D. S., West G. J., Gibson P. T., Laird R. J., Glasby T. M., 2023. Multi-scale assessments reveal changes in the distribution of the endangered seagrass Posidonia australis and the role of disturbances. Marine Biology, 170(11): 147. https://doi.org/10.1007/s00227-023-04279-0

Tang K. H. D., Hadibarata T., 2022. Seagrass meadows under the changing climate: A review of the impacts of climate stressors. Research in Ecology, 4(1): 27−36. https://doi.org/10.30564/re.v4i1.4363

Tapilatu R. F., Wona H., Mofu B., Kolibongso D., Alzair N., Erdmann M., Maruanaya B., 2022. Foraging habitat characterization of green sea turtles, Chelonia mydas, in the Cenderawasih Bay, Papua, Indonesia: Insights from satellite tag tracking and seagrass survey. Biodiversitas Journal of Biological Diversity, 23(6). https://doi.org/10.13057/ biodiv/d230601

Tu T. H., Lin E. J., Hung C. C., Chou W. C., Shih Y. Y., 2025. The dissolved oxygen variation in seagrasses is influenced by DOC excretion and its associated microbes. Estuarine, Coastal and Shelf Science, 313: 109080. https://doi.org/ 10.1016/j.ecss.2024.109080

Unsworth R. K., Cullen-Unsworth L. C., Jones B. L., Lilley R. J., 2022. The planetary role of seagrass conservation. Science, 377(6606): 609−613. https://doi.org/ 10.1126/science.abq6923

Vieira V. M., Lobo-Arteaga J., Santos R., Leitão-Silva D., Veronez A., Neves J. M., Pettersen M. R., 2022. Seagrasses benefit

from mild anthropogenic nutrient additions. Frontiers in Marine Science, 9: 960249. https://doi.org/10.3389/fmars. 2022.960249

Wang X. Y., Ge Y., Gao S., Chen T., Wang J., Yu F. H., 2021. Evenness alters the positive effect of species richness on community drought resistance via changing complementarity. Ecological Indicators, 133: 108464. https://doi.org/ 10.1016/j.ecolind.2021.108464

Ybañez Jr C. O., 2024. Exploring meiofaunal assemblages in Pujada Bay, Philippines: A glimpse into one of the world's most beautiful bays. Biodiversitas Journal of Biological Diversity, 25(5). https://doi.org/ 10.13057/biodiv/d250511

Ybañez Jr C. O., Gonzales R. C., 2023. Challenges and progress of grouper aquaculture in asia: A Review. Davao Research Journal, 14(2): 6−29. https://doi.org/10.59120/drj.v14i2.109

Zalsos J. D., Arriesgado D. M., Arriesgado E. M., Acuña R. E., 2021. Assessment and valuation of commercially important bivalves and gastropods within the seagrass beds of Laguindingan, Misamis Oriental and Rizal, Zamboanga del Norte, Philippines. J Environ Aquat Resour, 6: 16−34. https://doi.org/10.48031/msunjear. 2021.06.02

Zhang Y., Yu X., Chen Z., Wang Q., Zuo J., Yu S., Guo R., 2023. A review of seagrass bed pollution. Water, 15(21): 3754. https://doi.org/10.3390/w15213754

Downloads

Published

23-09-2025

How to Cite

Sanchez-Delute, C. C., Edgar B. Atoy, S., & Ybañez Jr, C. O. (2025). Seagrass ecosystems in Pujada bay, Davao Oriental, Philippines: evaluating the impact of anthropogenic pressures on species richness. Academia Journal of Biology, 47(3), 13–26. https://doi.org/10.15625/2615-9023/22573

Issue

Section

Articles

Similar Articles

<< < 62 63 64 65 66 67 68 69 70 71 > >> 

You may also start an advanced similarity search for this article.