Enhance prodigiosin production under optimal condition in mutant strain of Serratia marcescens QBN

Nguyen Sy Le Thanh, Thi Hien Trang Nguyen
Author affiliations

Authors

  • Nguyen Sy Le Thanh Institute of Biology, Vietnam Academy of Science and Technology,18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Thi Hien Trang Nguyen Gradute University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/22816

Keywords:

Prodigiosin, red pigment, Serratia marcescens, mutant, stress condition

Abstract

Prodigiosin, a red tripyrrole pigment primarily synthesized by Serratia marcescens, has attracted significant scientific interest due to its wide ranging bioactivities, notably its pro-apoptotic effects on cancer cells. In addition to its anticancer potential, prodigiosin demonstrates antibacterial, antifungal, antibiotic, and immunosuppressive properties, highlighting its relevance for pharmaceutical development. This study aimed to enhance prodigiosin biosynthesis through UV-induced mutagenesis of a wild-type S. marcescens QBN strain, followed by phenotypic selection. A mutant strain, S. marcescens UV1, was obtained through UV irradiation of the wild-type strain and selected based on enhanced pigment production. The results demonstrated a significant improvement in prodigiosin yield from the UV1 mutant compared to the wild-type strain. Specifically, UV1 produced approximately 700 mg/mL of prodigiosin, representing a 1.84-fold increase relative to the wild-type strain's yield of 380 mg/mL under the same conditions. This enhancement suggests that UV-induced mutagenesis conferred improved biosynthetic efficiency and potentially upregulated the metabolic pathway involved in prodigiosin synthesis. Consequently, S. marcescens UV1 represents a promising candidate for industrial-scale production of prodigiosin in biotechnological and therapeutic contexts.

Downloads

Download data is not yet available.

References

Bhagwat A., Padalia U., 2020. Optimization of prodigiosin biosynthesis by Serratia marcescens using unconventional bioresources. J Genet Eng Biotechnol, 18(1): 26.

Boric M., Danevcic T., Stopar D., 2011. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. Microb Ecol, 62: 528–536.

Brejning J., Arneborg N., Jespersen L., 2005. Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. J Appl Microbiol, 98:261–271.

Carbonell G. V., Della Colleta H. H., Yano T., Darini A. L., Levy C. E., Fonseca B. A., 2000. Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS Immunol Med Microbiol, 28: 143–149.

Cediel Becerra J. D. D., Suescun Sepulveda J. A., Fuentes J. L., 2022. Prodigiosin production and photoprotective/antigenotoxic properties in Serratia marcescens indigenous strains from Eastern Cordillera of Colombia. Photochem Photobiol, 98: 254–261.

Danevcic T., Boric Vezjak M., Tabor M., Zorec M., Stopar D., 2016. Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol, 7: 27.

de Araujo H. W., Fukushima K., Takaki G. M., 2010. Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low-cost substrate. Molecules, 15: 6931–6940.

Dikshit R., Tallapragada P., 2018. Development and screening of mutants from Monascus sanguineus for secondary metabolites production. Beni Suef Univ J Basic Appl Sci, 7: 235–240.

El-Bialy H. A., El-Nour S. A. A., 2015. Physical and chemical stress on Serratia marcescens and studies on prodigiosin pigment production. Ann Microbiol, 65: 59–68.

Elkenawy N. M., Yassin A. S., Elhifnawy H. N., Amin M. A., 2017. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnol Rep (Amst), 14: 47–53.

Fakorede C. N., Itakorode B. O., Odeyemi O., Babalola G., 2019. Enhancement of pigment production potential of Serratia marcescens (GBB151) through mutation and random amplified polymorphic deoxyribonucleic acid analysis of its mutants. J Appl Biol Biotechnol, 7: 1–6.

Giri A. V., Anandkumar N., Muthukumaran G., Pennathur G., 2004. A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol, 4: 11.

Hardjito L., Huq A., Colwell R. R., 2002. The influence of environmental conditions on the production of pigment by Serratia marcescens. Biotechnol Bioprocess Eng, 7: 100–104.

Harris A. K. P., Hughes T. R., Kim S. S., Matthews S. G., Schwartz R. D., Horne K. D., 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology, 150(11):3547–3560.

Hu D. X., Withall D. M., Challis G. L., Thomson R. J., 2016. Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem Rev, 116: 7818–7853.

Kavitha R., Aiswariya S., Ratnavali C., 2010. Anticancer activity of red pigment from Serratia marcescens in human cervix carcinoma. Int J Pharm Tech Res, 2: 784–787.

Kimyon O., Das T., Ibugo A. I., Kutty S. K., Ho K. K., Tebben J., Kumar N., Manefield M., 2016. Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Front Microbiol, 7: 972.

Lin J., Xie X., Zhang X., Zhao X., Wu L., 2023. PtrA regulates prodigiosin synthesis and biological functions in Serratia marcescens FZSF02. Frontiers in Microbiology, 14: 1240102.

Lu Y., Xie Z., Wu X., Zhang Y., Xu W., 2024. Prodigiosin: unveiling the crimson wonder – a comprehensive journey from diverse bioactivity to synthesis and yield enhancement. Frontiers in Microbiology, 15: 1412776.

Nguyen S. L. T., Nguyen T. C., Do T. T., Vu T. L., Nguyen T. T., Do T. T. Nguyen T. H. T., Le T. H., Trinh D. K., Nguyen T. A. T., 2022. Study on the anticancer activity of prodigiosin from variants of Serratia marcescens QBN VTCC 910026. Biomed Res Int, 2022: 4053074.

Pereira R. F. S., de Carvalho C. C. C. R., 2024. Improving bioprocess conditions for the production of prodigiosin using a marine Serratia rubidaea strain. Marine Drugs, 22(4):142.

Perez-Tomas R., Montaner B., 2003. Effects of the proapoptotic drug prodigiosin on cell cycle-related proteins in Jurkat T cells. Histol Histopathol, 18: 379–385.

Prabhu V. V., Hong B., Allen J. E., Zhang S., Lulla A. R., Dicker D. T., El-Deiry W. S., 2016. Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-Jun-mediated DeltaNp73 inhibition and p73 activation. Cancer Res, 76: 1989–1999.

Pradeep B. V., Pradeep S., Jayaraman A., Muthusamy P., 2012. Optimization and production of prodigiosin from Serratia marcescens MBB05 using various natural substrates. Asian Journal of Pharmaceutical and Clinical Research, 6: 1.

Rolfe M. D., Rice C. J., Lucchini S., Pin C., Thompson A., Cameron A. D., Alston M., Stringer M. F., Betts R. P., Baranyi J., Peck M. W., Hinton J. C., 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol, 194: 686–701.

Romanowski E. G., Lehner K. M., Martin N. C., Patel K. R., Callaghan J. D., Stella N. A., Shanks R. M. Q., 2019. Thermoregulation of prodigiosin biosynthesis by Serratia marcescens is controlled at the transcriptional level and requires HexS. Pol J Microbiol, 68: 43–50.

Romanowski E. G., Yates K. A., Mah F. S., 2019. Prodigiosin production by Serratia marcescens is temperature dependent. Journal of Bacteriology, 201(3): 594–618.

Sole M., Rius N., Francia A., Loren J. G., 1994. The effect of pH on prodigiosin production by non-proliferating cells of Serratia marcescens. Lett Appl Microbiol, 19: 341–344.

Vitale G. A., Sciarretta M., Palma Esposito F., January G. G., Giaccio M., Bunk B., Spröer C., Bajerski F., Power D., Festa C., Monti M C., D'Auria M. V., de Pascale D., 2020. Genomics-metabolomics profiling disclosed marine Vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. Journal of Natural Products, 83: 1495–1504.

Downloads

Published

23-06-2025

How to Cite

Thanh, N. S. L., & Nguyen, T. H. T. (2025). Enhance prodigiosin production under optimal condition in mutant strain of <em>Serratia marcescens </em>QBN. Academia Journal of Biology, 47(2), 117–127. https://doi.org/10.15625/2615-9023/22816

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.