Enhanced degradation of pretilachlor in soil and sediment slurries by inoculation of a mixed bacterial culture under anaerobic condition

Ha Danh Duc, Nguyen Gia Hien, Nguyen Thi Dieu Thuy, Nguyen Thi Kim Xuan
Author affiliations

Authors

  • Ha Danh Duc
  • Nguyen Gia Hien
  • Nguyen Thi Dieu Thuy
  • Nguyen Thi Kim Xuan

DOI:

https://doi.org/10.15625/2615-9023/21386

Keywords:

Pretilachlor, degradation, enhancement, bioreactor, soil, sediment.

Abstract

Pretilachlor is a main component of herbicides widely applied to control weeds, causing serious environmental problems. However, its degradation is so slow under anaerobic conditions. This study evaluated the enhancement of pretilachlor degradation using a mixed culture of Pseudomonas sp. Pr1, Proteiniclasticum sp. Pr2 and Paracoccus denitrificans Pr3. The result showed that the degradation using a horizontal-flow anaerobic immobilized biomass bioreactor gave a degradation rate of 3.11 ± 0.31 µM/day after six cycles. Moreover, the inoculation of these bacteria significantly augmented the degradation in slurries of soil collected from a paddy field and sediments from a river. In addition, the determination of pretilachlor degradation in water and soil collected from a paddy field showed that the degradation rates followed an order: a slurry of soil and water (20:80, w/w) > water ≈ soil and water (50:50, w/w). However, adjuvants in an herbicide significantly caused adverse effects on substrate degradation. This study showed the role of isolated bacteria in degradation augmentation in liquid media. It also provided information on the degradation differences in water soil slurry, and soil collected from a paddy field.

Downloads

Download data is not yet available.

References

Bhardwaj L., Kumar D., Singh U., Joshi C., Dubey S., 2024. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. Sci Total Environ, 914: 169911. https://doi.org/10.1016/ j.scitotenv.2024.169911

Bhowmick S., Das R., Das A. C. 2014. Effect of thiobencarb and pretilachlor on microorganisms in relation to mineralization of C and N in the Gangetic alluvial soil of West Bengal. Environ Monit Assess, 186(10): 6849–6856. https://doi.org/10.1007/s10661-014-3893-4

Braschi I., Pusino A., Gessa C., 2003. Adsorption-desorption of pretilachlor and cinosulfuron on paddy field sediment, in: Proceedings of the XII Symposium Pesticide Chemistry, Piacenza, Italy:

161–167.

Chau N. D., Sebesvari Z., Amelung W., Renaud F. G., 2015. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci Pollut Res Int, 22(12): 9042–9058. https://doi.org/10.1007/s11356-014-4034-x

Duc H. D., Oanh N. T., Dieu Thuy N. T., Kim Xuan N. T., 2024. Degradation of pretilachlor and fenclorim and effects of these compounds on bacterial communities under anaerobic condition. Biodegradation, 35(5): 583–599. https://doi.org/10.1007/ s10532-024-10078-1

Duc H. D., Triet B. M., 2017. Biodegradation of aniline by freely suspended and immobilized Pseudomonas moraviensis AN-5. Tap Chi Sinh Hoc, 39(3): 303–308. https://doi.org/10.15625/0866-7160/v39n3 .9630

Fajardo F. F., Takagi K., Usui K., 2000. Dissipation of mefenacet and pretilachlor in paddy soils under laboratory oxidative and reductive conditions. J Weed Sci Tech, 45(4): 250–253. https://doi.org/ 10.3719/WEED.45.250

Flori P., Pancaldi D., Braschi I., Gessa C., 2003. Behavior of four herbicides in a paddy field: simulation by a laboratory microcosm, in: Proceedings of the XII Symposium Pesticide Chemistry, Piacenza: 223–232.

Hisato M. I., 1998. Effects of the agrochemicals butachlor, pretilachlor and isoprothiolane on rat liver xenobioticmetabolizing enzymes. Xenobiotica, 28: 1029–1039. https://doi.org/10.1080/004982598238921

Hu L., Yao Y., Cai R., Pan L., Liu K., Bai L., 2020. Effects of fenclorim on rice physiology, gene transcription and pretilachlor detoxification ability. BMC Plant Biology, 20(1): 100. https://doi.org/10.1186/s12870-020-2304-y

Jiang J., Chen Y., Yu R., Zhao X., Wang Q., Cai L., 2016. Pretilachlor has the potential to induce endocrine disruption, oxidative stress, apoptosis andimmunotoxicity during zebrafish embryo development. Environ Toxicol Pharmacol, 42: 125–134. https://doi.org/10.1016/j.etap.2016.01.006

Jouyban A., Farajzadeh M. A., Mogaddam M. R. A., 2020. In matrix formation of deep eutectic solvent used in liquid phase extraction coupled with solidification of organic droplets dispersive liquid-liquid microextraction; application in determination of some pesticides in milk samples. Talanta, 206: 120169.

Kadakol J. C., Kamanavalli C. M., Shouche Y., 2011. Biodegradation of Carbofuran phenol by free and immobilized cells of Klebsiella pneumoniae ATCC13883T. World J Microbiol Biotechnol, 27, 25–29. https://doi.org/10.1007/s11274-010-0422-7

Kobayashi K., Ashida N., Shim I. S., 1999. Pretilachlor behavior and its phytotoxic activity on transplanted rice in Utsunomiya paddy soil. J Weed Sci Tech, 44: 285–292. https://doi.org/10.3719/ WEED.44.285

Liu J., Zhang X., Xu J., Qiu J., Zhu J., Cao H., He J., 2020. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway. Sci Total Environ, 748: 141122. https://doi.org/ 10.1016/ j.scitotenv.2020.141122

Manohar S., Kim C. K., Karegoudar T. B., 2001. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam. Appl Microbiol Biotechnol, 55(3): 311–316. https://doi.org/ 10.1007/s002530000488

Marin-Morales M. A., Ventura-Camarg B. C., Hoshin M. M., 2013. Toxicity of herbicides: impact on aquatic and soil biota and human health. Herbicides Andrew Price, IntechOpen: 399–443. https://doi.org/10.5772/55851

Mulla S. I., Talwar M. P., Bagewadi Z. K., Hoskeri R. S., Ninnekar H. Z., 2013. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere, 90: 1920-1924. https://doi.org/10.1016/j.chemosphere.201.10.030

Murata T., Takagi K., Ishizaka M., Yokoyama K., 2004. Effects of mefenacet and pretilachlor applications on phospholipid fatty acid profiles of soil microbial communities in rice paddy soil. J Soil Sci Plant Nutr, 50: 349–356. https://doi.org/ 10.1080/00380768.2004.10408488

Oanh N. T., Duc H. D., 2022. Enhanced anaerobic degradation of thiobencarb using a horizontal-flow anaerobic immobilized biomass bioreactor. FEMS Microbiol Lett, 368(21−24): fnac001. https://doi.org/10.1093/femsle/fnac001

Oliveira G. H. D., Santos-Neto A. J., Zaiat M., 2017. Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate. J Environ Manage, 204(1): 674−83.

Oloye F. F., Femi-Oloye O. P., Challis J. K., Jones P. D., Giesy J. P., 2021. Dissipation, fate, and toxicity of crop protection chemical safeners in aquatic environments. Rev Environ Contam Toxicol, 258: 27–53. https://doi.org/ 10.1007/398_2021_70

Ribeiro R., de Nardi I. R., Fernandes B. S., Foresti E., Zaiat M., 2013. BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions. Biodegradation, 24: 269–278.

Rodrigues B. C. G., de Mello B. S., da Silva B. F., Pozzi E., de Lima P. C. F., 2021. Gomes and Sarti A. Limonene removal using a horizontal-flow anaerobic immobilized biomass bioreactor. J Water Process Eng, 43: 102225.

Saha S., Dutta D., Karmakar R. D. P., 2012. Structure-toxicity relationship of chloroacetanilide herbicides: relative impact on soil microorganisms. Environ Toxicol Pharmacol, 34: 307–314. https://doi.org/10.1016/j.etap.2012.04.014

Sahoo S., Adak T., Bagchi T. B., Kumar U., Munda S., Saha S., Berliner J., Jena M., Mishra B. B., 2016. Non-target effects of pretilachlor on microbial properties in tropical rice soil. Environ Sci Pollut Res, 23: 7595–7602. https://doi.org/10.1007/ s11356-015-6026-x

Sapari P., Ismail B. S., 2012. Pollution levels of thiobencarb, propanil, and pretilachlor in

rice fields of the muda irrigation scheme, Kedah, Malaysia. Environ Monit Assess, 184(10): 6347–6356. https://doi.org/ 10.1007/s10661-011-2424-9

Shilpakar O., Karki B., Rajbhandari B., 2020. Pretilachlor poisoning: A rare case of an herbicide masquerading as organophosphate toxicity. Clin Case Rep, 8(12): 3507–3509. https://doi.org/ 10.1002/ccr3.3473.

Toan P. V., Sebesvari Z., Blasing M., Rosendahl I., Renaud F. G., 2013. Pesticide management and their residues in sediments and surface and drinking water in the Mekong Delta, Vietnam. Sci Total Environ, 452–453: 28–39. https://doi.org/10.1016/j.scitotenv.2013.0.026

Vidotto F., Ferrero A., Bertoia O., Gennari M., Cignetti A., 2004. Dissipation of pretilachlor in paddy water and sediment. Agronomie, 24: 473–479. https://doi.org/ 10.1051/agro:2004043

Wang L., Zheng M., Xu H., Hua Y., Liu A., Li Y., Fang L., Chen X., 2022. Fate and ecological risks of current-use pesticides in seawater and sediment of the Yellow Sea and East China Sea. Environ Res, 207: 112673. https://doi.org/10.1016/j.envres. 2021.112673

Downloads

Published

23-09-2025

How to Cite

Duc, H. D., Gia Hien, N., Dieu Thuy, N. T., & Kim Xuan, N. T. (2025). Enhanced degradation of pretilachlor in soil and sediment slurries by inoculation of a mixed bacterial culture under anaerobic condition. Academia Journal of Biology, 47(3), 1–11. https://doi.org/10.15625/2615-9023/21386

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.