A new forestry bacterial isolate Brevundimonas sp. negatively affecting on Caenorhabditis elegans

Le Tho Son, Nguyen Thi Thu
Author affiliations

Authors

  • Le Tho Son Vietnam National Forestry University https://orcid.org/0000-0002-7580-9301
  • Nguyen Thi Thu F-School, Vietnam National University of Forestry, Chuong My, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/21897

Keywords:

bacteria, brood size, food preference, longevity, nematodes

Abstract

Bacteria are food sources for the Caenorhabditis nematodes. This interaction becomes a model to understand the effects of bacteria on the nematodes and other host organisms. In this research, we report the identification of the environmental Brevundimonas sp. CFBb114 in Cat Tien National Park with the 16S rDNA. CFBb114 inhabits within the microhabitats of the nematode genus Caenorhabditis. We fed Caenorhabditis elegans with CFBb114 to investigate the effects of CFBb114 on C. elegans, and found that the bacteria reduced longevity and reproduction and changed the behavior of C. elegans. This research will facilitate the study of how host organisms evolve mechanisms against the impacts of bacteria.

Downloads

Download data is not yet available.

References

Alvarez O. A., Jager T., Kooijman S. A. L. M., Kammenga J. E., 2005. Responses to stress Caenorhabditis elegans populations with different reproductive strategies. Functional Ecology, 2005(19): 9. https://doi.org/ 10.1111/j.1365-2435.2005.01012.x

Angelo G., Van Gilst M. R., 2009. Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science, 326(5955): 954−958. http://doi.org/ 10.1126/science.1178343

Baquiran J. P., Thater B., Sedky S., De Ley P., Crowley D., Orwin P. M., 2013. Culture-independent investigation of the microbiome associated with the nematode Acrobeloides maximus. PLoS One 8(7): e67425. http://doi.org/10.1371/journal. pone.0067425

Dirksen P., Assie A., Zimmermann J., Zhang F., Tietje A. M., Marsh S. A., et al., 2020. CeMbio - The Caenorhabditis elegans Microbiome Resource. G3 (Bethesda), 10(9): 3025−3039. http://doi.org/10.1534/ g3.120.401309

Duclairoir Poc C., Groboillot A., Lesouhaitier O., Morin J. P., Orange N., Feuilloley M. J., 2011. Caenorhabditis elegans: a model to monitor bacterial air quality. BMC Res Notes, 4. http://doi.org/10.1186/1756-0500-4-503

Golden J. W., Riddle D. L., 1984. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Developmental Biology, 102(2): 368−378. http://doi.org/ 10.1016/0012-1606(84)90201-x

Hamana K., Saito T., Okada M., 2001. Distribution profiles of spermidine and homospermidine within the alpha subclass of the class Proteobacteria. Microbiol. Cult. Coll. June 2001 3−12.

Le T. S., Nguyen T. H. G., Ha B. H., Huong B. T. M., Nguyen T. T. H., Vu K. D., et al., 2022. Reproductive Span of Caenorhabditis Elegans is Extended by Microbacterium sp. Journal of Nematology, 54(1): 20220010. http://doi.org/10.2478/jofnem-2022-0010

Le T. S., Nguyen T. T. H., Thi Mai Huong B., Nguyen H. G., Ha B. H., Nguyen V. S., et al., 2021. Cultivation of Caenorhabditis elegans on new cheap monoxenic media without peptone. Journal of Nematology, 53. http://doi.org/10.21307/jofnem-2021-036

Leung M. C., Williams P. L., Benedetto A., Au C., Helmcke K. J., Aschner M., et al., 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106(1): 5−28. http://doi.org/ 10.1093/toxsci/kfn121

Li J., Ding M., Sun X., Li Z., Xu L., Li L., 2022. Characterization of Nematicidal Activity and Nematode-Toxic Metabolites of a Soilborne Brevundimonas bullata Isolate. Pathogens, 11(6). http://doi.org/ 10.3390/pathogens11060708

Michael A. J., 2018. Polyamine function in archaea and bacteria. J Biol Chem, 293(48): 18693−18701. http://doi.org/ 10.1074/jbc.TM118.005670

Mukhopadhyay A., Tissenbaum H. A., 2007. Reproduction and longevity: secrets revealed by C. elegans. Trends in Cell Biology, 17(2): 65−71. http://doi.org/ 10.1016/j.tcb.2006.12.004

Schoch C. L., Ciufo S., Domrachev M., Hotton C. L., Kannan S., Khovanskaya R., et al., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020. http://doi.org10.1093/database/baaa062

Son L. T., Gam N. T. H., Thu N. T., Loan D. T. H., 2023b. Wild-type Caenorhabditis sinica, a dodel nematode for speciation and evolution, massively found in Vietnam. Vietnam Journal of Biotechnology, 21(3). https://doi.org/10.15625/1811-4989/19494

Son L. T., Hang N. T. T., Thu N. T., 2023a. Three rare dioecious Caenorhabditis nematode species (C. tripulationis, C. yungquensis, and C. zanzibari) do not live in the same habitats. Vietnam Journal of Biotechnology 21(4): 759−764.

Son L. T., Huong B. T. M., Hong H. B., Thu N. T., 2024. Nematode isolates of Caenorhabditis brenneri yielded more in Cat Tien but less in Cuc Phuong National Parks. Vietnam Journal of Forest Science, 2024(1): 109−116.

Stiernagle T., 2006. Maintenance of C. elegans. WormBook: 1−11. http://doi.org/ 10.1895/wormbook.1.101.1

Sun Y., Ran Y., Yang H., Mo M., Li G., 2023. Volatile Metabolites from Brevundimonas diminuta and Nematicidal Esters Inhibit Meloidogyne javanica. Microorganisms 11(4). http://doi.org/10.3390/microorganis ms11040966

Tamura K., Stecher G., Kumar S., 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7): 3022−3027. http://doi.org/10.1093/molbev/msab120

Tofalo R., Cocchi S., Suzzi G., 2019. Polyamines and Gut Microbiota. Front Nutr, 6(16). http://doi.org/10.3389/ fnut.2019.00016

Topalovic O., Elhady A., Hallmann J., Richert-Poggeler K. R., Heuer H., 2019. Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Scientific Reports, 9(1): 11477. http://doi.org/10.1038/ s41598-019-47942-7

Xi H., Nie X., Gao F., Liang X., Li H., Zhou H., et al., 2023. A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine. Science advances 9(43): eadj9075. http://doi.org/ 10.1126/sciadv.adj9075

Zheng L., Li G., Wang X., Pan W., Li L., Lv H., et al., 2008. Nematicidal endophytic bacteria obtained from plants. Annals of Microbiology, 58(4): 569−572. https://doi.org/10.1007/BF03175559

Downloads

Published

23-09-2025

How to Cite

Son, L. T., & Thi Thu, N. (2025). A new forestry bacterial isolate <em>Brevundimonas</em> sp. negatively affecting on <em>Caenorhabditis elegans</em>. Academia Journal of Biology, 47(3), 149–156. https://doi.org/10.15625/2615-9023/21897

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.